# Alternative Filters for Imaging Planets

#### UV, IR, Methane

-Bill Warden

# Alternative Filters for Imaging Planets

UV, IR, Methane -Most opaque to visible light -avoid refractors -best in RC's/reflectors -can get away with SCT's -uncoated barlow for UV

## UV

#### -Venus

-UltraViolet light shows rapidly moving clouds, thought to be composed of sulfuric acid and aerosols(wikipedia)



## -Baader U filter -350nm, bandwidth 60nm -(320-380nm)-\$\$ -Astrodon discontinued -back as Farpoint/OSI -Stack Violet and IR block



-many coatings block UV
-consider no barlow or uncoated?
-but it's really bright...



## Red+IR -more signal, less contrast -possibly Mars -haven't used

## **IR Pass Filters**

-near IR <1000 nm -most amateur cameras insensitive to IR above 1000nm

## IR

-resistant to poor seeing
-limit resolution due to larger spot size
-mitigated by larger aperture
-blue channel theoretically sharper than red (sure)



bring out contrast in blue structures
base line planet image is white
vs DSO black
Mars 2018

## **IR Pass Filters**

Baader IR 685nm (-1000) Astronomik IR 742 Astronomik IR 807 **ZWO IR 850** RG1000 1000 nm long pass >1000nm



### **ZWO IR 850** -color filters on OSC camera pass IR (IR/UV block filter recommended) -can use with ZWO OSC color camera as mono with IR pass filter -inexpensive

## **ZWO IR 850**



## Which IR Filter?

Baader IR 685nm (-1000) Astronomik IR 742 Astronomik IR 807 ZWO IR 850 RG1000 1000 nm long pass >1000nm

## Which IR Filter?

Depends on Seeing For me IR 807>=IR 685 despite -longer exposure times -capturing fewer frames. Except Mars -very short exposure mitigated seeing?

## Methane

-Methane in the atmosphere of gas giants absorbs red

-filters target 889 nm absorption band in IR

## Methane

-There is methane everywhere in gas giants

-absorption less when there is a reflective element higher up in the atmosphere

-proxy for height of clouds.

-higher clouds, brighter signal (less absorption 2x distance)

## Methane

-faint signal requires longer exposure, and/or binning, less magification

-limits planetary imaging techniques to compensate for seeing distortions

## Methane which filter?

-889 nm with 50, 20, 8 nm band width
-narrower better contrast
-price inversely correlated with width
-ZWO 20 nm
-Baader 8 nm



-rock -no color -no atmosphere -seeing is the only concern -dominated by atmospheric distortion at low altitude

# Mercury

IR longer wavelength the better -Astronomik IR 807 -consider ZWO 850 -only role for RG 1000 nm

## Mercury

### Is mid-day imaging possible? 2006 RGB C8 toucam





#### 2018 IR C11 ZWO 290-MM





#### 2018 IR C11 ZWO 290-MM 2x Barlow





Improvements: -mid day? -more disk visible -multiple shots to confirm rotation -reflector?

## Venus

-UltraViolet light shows rapidly moving clouds, thought to be composed of sulfuric acid and aerosols(wikipedia) -Subtle bands in IR possible

## Venus

higher than Mercurycan be captured mid day



#### 2018 UV C11 ZWO 290-MM 2x Barlow



## Venus

Improvements: -mid day? -more disk visible -multiple shots to confirm rotation -reflector?

## Mars

#### -IR -fight poor seeing

-enhance contrast of blue surface detail

-penetrate martian dust

## Mars

#### -IR

-shorter wavelength (685 vs 807) seemed as effective or better than longer -extremely bright -very short exposures minimize seeing effects? -red + IR?

# Mars, Bringer of....Dust

Ironically, approaching 2018 opposition surface detail completely obscured by planet wide dust storm.

Began to clear at closest approach

IR dramatic increase in surface detail/contrast



# Mars, Bringer of....Dust 4/20/2014 RGB



## Mars, Bringer of....Dust

# closest approach 7/31/18 8:21 UTC





## Mars, Bringer of....Dust





### closest approach 7/31/18 8:21 UTC

# Mars, Bringer of....Dust 10/27/18


# Jupiter

-IR makes GRS, equatorial band brighter -most detail involves red structures -enhanced in blue channel -IR not useful as luminance -IR does bring out detail/contrast in blue festoons



#### 6/27/19 5:23 UTC



# Jupiter

-imaging all about seeing-IR filter not that helpful-similar to saturation boost

#### Jupiter IR comparison 6/23/19 6:49 UTC

RGB

**IR-GB** 



#### Jupiter IR comparison 6/23/19 6:49 UTC

IR 807

IR 685

# Jupiter

685 nm FPS=116 Shutter=4.931ms Frames captured=10453

> 807 nm FPS=34 Shutter=23.89ms Frames captured=3065

IR 807

#### Jupiter GRS Peel Off 6/9/19 8:52 UTC

RGB

**IR-GB** 



#### Jupiter GRS Peel Off 6/9/19 8:52 UTC

**IR-GB** 



#### **RGB/IR-GB**



**Jupiter GRS Peel Off** Here's a time lapse of the great red spot taken by <u>BQ Octantis</u>, a member of the cloudy nights forum, imaging from the Australian outback:

> Great Red Spot Progression 25 May - 28 June 2019



2019-05-25 12:18 UTC

Copyright 2019 BQ Octantis. All rights reserved

# **Jupiter GRS Peel Off**

Great Red Spot Progression 25 May - 28 June 2019



2019-05-25 12:18 UTC

Copyright 2019 BQ Octantis. All rights reserved.

A section of the great red spot appears to peel off on June 1 and then progress to the right.

<u>ttps://www.skyandtelescope.com/a</u> stronomy-news/jupiters-greatred-spot-unfurls-see-it-in-yourscope/</u>

-GRS unfurling

-There is methane everywhere in Jupiter's atmosphere

-absorption less when there is a reflective element higher up in the atmosphere

-proxy for height of clouds.

-higher clouds, brighter signal (less absorption 2x distance)



-Brighter at GRS -high in the atmosphere, therefore little methane absorption -equatorial "clearing" -bright poles -very dark east and west sides

#### -Looks Cool





6/27/19 5:23 UTC C11 Edge ZWO ASI 290 MM Baader 889 nm x 8 nm



Methane Frames captured=452 **Binning=2x2** FPS (avg.)=4 Shutter=200.3ms Gain=361 (60%)

Blue Frames captured=25737 **Binning=no** ROI=304x300 ROI(Offset)=0x0 FPS (avg.)=285 Shutter=1.829ms Gain=361 (60%)

# **Jupiter Methane** GRS unfurling? 6/29/19 6:17 UTC



# Jupiter Methane Moons extremely bright



-equatorial clearing?

https://www.skyandtelescope.com/ astronomy-news/astronomersidentify-weather-cycle-jupiter/

#### Saturn

-north polar hexagon blue
-excellent target for IR
-detail in ring structure

#### Saturn IR

#### 6/26/18 7:45 UTC

RGB

**IR-RGB** 



# Saturn IR



## Saturn IR



### Saturn

-Methane

-Rings (water ice) glow dramatically in contrast to dark disk which absorbs methane band
-Not much detail on disk
-detect faint moons lost in the glare of the disk

#### **Saturn Methane**



Frames captured=207 Binning=2x2 Shutter=283.0ms Gain=351 (58%)

## **Ice Giants**

-Bluish due to methane absorbing red light

-very faint so most advocate IR as a proxy for methane (need enough signal to track disk for stacking)

#### Uranus

-well suited for northern hemisphere observers
-transit elevation 67 degrees
-vs 34 for jupiter

# **Uranus Spectrum**

-Christophe Pellier (with permission)

#### https://www.planetary-astronomy-and-imaging.com/en/uranus-spectrumcommented



## **Uranus IR Filter review**

- -Christophe Pellier
- Baader 610 nm brightest
- Astronomik BP642 OK
- Baader 685 nm sacrifices brightness, but improves contrast
- Astronomik IR742 does not pass enough light

https://www.planetary-astronomy-and-imaging.com/en/filters-uranusspectroscopy

## **Uranus IR Filter review**

-Christophe Pellier (with permission)

#### https://www.planetary-astronomy-and-imaging.com/en/filters-uranusspectroscopy



#### Uranus

-No white point -add long exposure wide field captures for color balance on moons and orientation for winjupos

#### Uranus

# -IR will show cloud detail on summer side

# **Uranus IR-IRRGB**



# Neptune

# -IR may show small clouds, great dark spot

# Neptune

-No white point -add long exposure wide field captures for color balance on Triton and orientation for winjupos -Triton is relatively bright -often visible in standard captures

# Neptune








